Niching in Particle Swarm Optimization
نویسندگان
چکیده
The Particle Swarm Optimization (PSO) algorithm, like many optimization algorithms, is designed to find a single optimal solution. When dealing with multimodal functions, it needs some modifications to be able to locate multiple optima. In a parallel with Evolutionary Computation algorithms, these modifications can be grouped in the framework of Niching. In this thesis, we present a new approach to niching in PSO that is based on clustering particles to identify niches. The neighborhood structure, on which particles rely for communication, is exploited together with the niche information to perform parallel searches to locate multiple optima. The clustering approach was implemented in the k-means based PSO (kPSO), which employs the standard k-means clustering algorithm. We follow the development of kPSO, starting from a first, simple implementation, and then introducing several improvements, such as a mechanism to adaptively identify the number of clusters. The final kPSO algorithm proves to be a competitive solution when compared with other existing algorithms, since it shows better performance on most multimodal functions in a commonly used benchmark set.
منابع مشابه
Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملAn Automatic Niching Particle Swarm for Multimodal Function Optimization
Niching is an important technique for mutlimodal optimization. This paper proposed an improved niching technique based on particle swarm optimizer to locate multiple optima. In the proposed algorithm, the algorithm inspired from natural ecosystem form niches automatically without any prespecified problem dependent parameters. Experiment results demonstrated that the proposed niching method is s...
متن کاملDeveloping Niching Algorithms in Particle Swarm Optimization
Niching as an important technique for multimodal optimization has been used widely in the Evolutionary Computation research community. This chapter aims to provide a survey of some recent efforts in developing stateof-the-art PSO niching algorithms. The chapter first discusses some common issues and difficulties faced when using niching methods, then describe several existing PSO niching algori...
متن کاملNiching for Ant Colony Optimisation
Evolutionary Computation niching methods, such as Fitness Sharing and Crowding, are aimed at simultaneously locating and maintaining multiple optima to increase search robustness, typically in multi-modal function optimization. Such methods have been shown to be useful for both single and multiple objective optimisation problems. Niching methods have been adapted in recent years for other optim...
متن کاملScalability of niche PSO
In contrast to optimization techniques intended to find a single, global solution in a problem domain, niching (speciation) techniques have the ability to locate multiple solutions in multimodal domains. Numerous niching techniques have been proposed, broadly classified as temporal (locating solutions sequentially) and parallel (multiple solutions are found concurrently) techniques. Most resear...
متن کاملA Dynamic Archive Based Niching Particle Swarm Optimizer Using a Small Population Size
Many niching techniques have been proposed to solve multimodal optimization problems in the evolutionary computing community. However, these niching methods often depend on large population sizes to locate many more optima. This paper presents a particle swarm optimizer (PSO) niching algorithm only using a dynamic archive, without relying on a large population size to locate numerous optima. To...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007